CS 6815: Lecture 10
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September 27, 2018

1 Expander Graphs

More information on expander graphs can be found in Chapter 4 of Salil Vadhan’s book [1], and
in a survey by Hoory, Linial, and Widgerson [2].

Informally, expander graphs are sparse graphs that are ”really well connected.”

More formally, an expander graph is a graph G = (V, E), with |V| = n, that is:

1. a multigraph.
2. undirected, but each edge counts as 2 edges. {u,v} = (u,v), (v, u)
3. d-regular.

In addition to the above properties, the graph should be ”really well connected.” What does it
mean to be "really well connected”? Here are some equivalent ideas.

1. N(S)={veV:3ues (uv) € E}, and N(S) is large

2. Let E(S,T) be the edges between sets of vertices S and T, and let S be V \ S. E(S,S) is
large.

But what does "large” mean? We will explore the definitions more in the next sections.

2 Edge Expansion

For S C V, let 9S = E(S,S), which is the number of edges leaving set S.

Definition 2.1. The expansion ratio is:
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Definition 2.2. G is an « edge expander if h(G) > «.

3 Vertex Expanders
Definition 3.1. G is a (K, A) vertex expander if VS C V,|N(S)| > A|S|, where |S| < K.

Theorem 3.2. Ford > 3, 3 a constant a > 0 such that a random d-reqular graph is a (an,d — %)
vertex expander (with high probability).



Some constructions of vertex expanders:

1. Lubotzky-Phillips-Sarnak [3]
V = Z,, where p is a prime.
x € V is connected to: x4+ 1, x — 1, 27!, (3-regular graph)
This construction, while simple, is not ideal because we don’t know how to deterministically
generate large primes

2. Margulis [4]
V = Zon X Lo, m € Z
Vertex (z,y) is connected to (x +y,y), (x —y,y), (z,y + ), (x,y —z), (z +y + L, y), (z,y +
x4+ 1), (x,y —z+1) (all mod m)

4 Spectral Expansion

Notation: A is the adjacency matrix for graph G. A= éA is the normalized adjacency matrix.

A is a symmetric real matrix. Av = Av,v € R", where A is an eigenvalue and v is the corre-
sponding eigenvector.

Fact: Given that {A1, Ag, ..., \,} are eigenvalues of A, with corresponding eigenvectors {v1, ..., v,}:

1. The A;’s are real.
2. The v;’s form an orthonormal basis.
Let A\ > A9 > --- > A, be the sorted eigenvalues. Then

1. )\1 = d,vl = i?,

n

where ? is the vector of all 1s.
2. A\ = A9 iff G is not connected.

3. Let A = max{|Aza|, |\nl|}

4. If A\, = —)\1, then G is a bipartite graph.

Definition 4.1. G is a (n,d,t) spectral expander if A\g < t, where Ag is the A value for graph G.
The spectral gap is defined to be d — t.

Claim 4.2 (Alon-Boppana). A > 2y/d — 1 — 0,(1).
Claim 4.3. (weaker claim) A\ > Vd(1 — 0,(1)).
Proof.
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Lemma 4.4 (Expander Mixing Lemma). Let G be a (n,d, \) spectral expander. Then, VS, T CV,

E(S,T) - L] < A\/[STITT.

Proof. Let Ig, IT € R™, where Ig, IT are the indicator vectors for S, T respectively. We knoy> that
Ig = Zaivi,IT = 25172, where V; are the eigenvectors of A. Note that Vi, = L1 and
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This means that
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5 Spectral Expansion = Vertex Expansion
Let G be a (n, d, ) spectral expander graph, with A as its normalized adjacency matrix, and o = %.
Let S C V. We want to show that G is a vertex expander by proving that N(S) > Al|S]|.
Let P be the probability distribution uniform on S. P € R™. P(i) = Iiél if i € S, and 0
otherwise.

Definition 5.1. If p € R", the Renyi entropy of p is Ha(p) = log (W)
2

The Renyi entropy of P is Ha(P) = log(|5]).
Claim 5.2. |Supp(P)| > 212(P).
Proof.
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= Supp(P) > = 22(P)
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